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Abstract

In this paper the smooth function method, previously proposed for bending vibrations, is extended to the
calculation of longitudinal natural frequencies of a vibrating isotropic bar with an arbitrary finite number
of symmetric transverse open cracks. Moreover, the transfer matrix approach and the finite element method
are considered to deal with the same problem. The paper includes several examples related to bars with
three cracks which permit the comparison of natural frequencies predicted by these three methods.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration-based inspection (VBI) is an area of active research and of great interest for future
leading edge technologies such as health monitoring. A number of researchers have dealt with this
topic by addressing either the direct or the inverse problem, i.e., the estimation of the effects
of structural damage on the eigenparameters of the structure under study and the problem of
detecting, locating and quantifying the extent of damage, respectively. A complete review of
documented research in this area can be found in Ref. [1]; furthermore Dimarogonas [2] presents a
state-of-the-art review of methods developed to deal with cracked structures.
In order to investigate the prevailing effects of damage present in the structure under

examination, a mathematical model of the damage must be introduced into the model of the
structure at the location of the fault. Different damage models have been considered. While
focusing on transverse oscillations, a simple stiffness reduction of the damaged region was used in
Ref. [3]. Dimarogonas [4] introduced a local flexibility model for a crack to analyse the dynamic
behaviour of cracked beams and Chondros and Dimarogonas [5] combined this spring hinge
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model with fracture mechanics results, developing also a frequency spectral method to identify
cracks in various structures. This rotational massless spring model, with stiffness related to the
crack extent in the damaged section, has been used in a number of investigations [6–12]. Christides
and Barr [13] developed a cracked Euler–Bernoulli beam theory by deriving the differential
equation and related boundary conditions for a uniform beam with one or more pairs of
symmetric cracks.
These or similar techniques can be used to determine the effect of the crack on the longitudinal

dynamic behaviour too. In particular, Rice and Levy [14] demonstrated that a massless spring can
be used to represent the compliance due to the crack in both the longitudinal and transverse
motion of the beam. Chondros et al. [15] developed a continuous cracked bar vibration theory for
longitudinal vibration of rods with an edge-crack and used the Hu–Washizu–Barr variational
formulation to obtain the differential equation and the boundary conditions that govern the
problem. Moreover, they presented experimental results, showing that they are close to numerical
predictions.
For a long time, research in this field has centred on structures with a single fault, although

occasionally with two faults [16], while only recently a number of papers have appeared which
deal with multi-cracked beams. One of the early articles considering beams with several cracks
and solving the related inverse problem was published in 1997 [17], whereas in, Ref. [18] a
technique was proposed which lead to very compact determinantal equations for the
determination of natural frequencies of beams with an arbitrary number of transverse open
cracks. Zheng and Fan [19,20] used a kind of modified Fourier series to compute natural
frequencies of Euler–Bernoulli and Timoshenko beams. Khiem and Lien [21] solved the direct
problem by using a transfer matrix approach, while Li [22] utilised a properly derived basic
solution and a recurrence formula.
Another method for evaluating natural frequencies of a cracked beam is based on the use of the

finite element method [23–25]. By employing this approximation technique it is possible to
evaluate the dynamic properties of a beam with an arbitrary number of cracks, although this
method leads to a system of linear equations and to determinants of high order, thus yielding
results with generally less accuracy than continuous models.
Even though the analysis of the transverse dynamic behaviour of multi-cracked beams has been

presented in several articles, to the authors’ knowledge the longitudinal dynamic behaviour of
such structures has not been analyzed.
As a result, the aim of this article is determine the longitudinal dynamic behaviour of bars with

several open cracks by extending the method previously proposed by Shifrin and Ruotolo [18] for
the prediction of the transverse dynamic behaviour of multi-cracked beams. Some numerical
examples complete the article, and comparisons are drawn with corresponding results provided by
a transfer matrix approach and by the finite element method.

2. Smooth function method

A bar with length l and with n cracks is considered (Fig. 1). It is assumed that cracks are located
at points x1; x2;y; xn such that 0ox1ox2o?oxnol: Amplitudes of longitudinal displacement
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of the beam axis under time-harmonic vibration are denoted by ujðxÞ on the interval xj�1oxoxj

where j ¼ 1; 2;y; n þ 1; x0 ¼ 0 and xnþ1 ¼ l:
According to the approach proposed in Ref. [6], it is possible to divide the entire bar

into n þ 1 bars connected by massless springs representing the n cracks. As a consequence,
the equation of harmonic longitudinal oscillations of each bar, assumed with uniform cross
section, is

EAu00j ðxÞ þ o2rAujðxÞ ¼ 0; j ¼ 1;y; n þ 1; xj�1oxoxj; ð1Þ

where E is Young’s modulus, A is the area of the cross section, r is the material density, and o is a
natural circular frequency.
It is possible to introduce two conditions for each connection between two bars which,

in correspondence with the location of the crack, impose continuity for the normal
force and discontinuity for the longitudinal displacement of the bar in correspondence of the
crack.

u0
jðxjÞ ¼ u0

jþ1ðxjÞ;

ujþ1ðxjÞ � ujðxjÞ ¼ Dj ¼ EAcju
0
jðxjÞ; j ¼ 1; 2;y; n; ð2Þ

where cj is the flexibility of the jth translational spring which is function of the crack
extent and bar width. In order to consider only the effect of the longitudinal vibrations,
a double edge crack, symmetrical with respect to the longitudinal axis of the bar has been
considered (Fig. 2). In this case, according to the stress intensity factor formulated by Brown in
Ref. [26]

ðKI Þj ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffi
paj=2

q
ð1:12þ 0:203 sj � 1:197 s2j þ 1:93 s3j Þ; ð3Þ

and using the procedure proposed by Rice and Levy [14] cj can be expressed as

cj ¼
2hð1� n2Þ

EA
attðsjÞ; ð4Þ

with sj ¼ aj=h where aj is the depth of the jth crack and

attðsjÞ ¼ 0:7314 s8j � 1:0368 s7j þ 0:5803 s6j þ 1:2055 s5j

� 1:0368 s4j þ 0:2381 s3j þ 0:9852 s2j :

Amplitude of displacement ujðxÞ can be collected into the function uðxÞ as follows:

uðxÞ ¼ ujðxÞ; j ¼ 1;y; n þ 1; xj�1oxoxj;

ARTICLE IN PRESS

x2

xn

x
1

l

Fig. 1. Multi-cracked bar.

R. Ruotolo, C. Surace / Journal of Sound and Vibration 272 (2004) 301–316 303



such that uðxÞ is able to refer to the displacements of the entire bar axis. Eq. (1) with conditions (2)
can be expressed through function uðxÞ in the following way:

u00ðxÞ ¼ �l2uðxÞ þ
Xn

j¼1

Djd
0ðx � xjÞ; ð5Þ

in which dðxÞ is Dirac’s delta function and l2 ¼ o2r=E: d0ðxÞ appears in Eq. (5) due to the
discontinuity of the displacement uðxÞ at the cracks, as expressed in Eqs. (2).
Furthermore, uðxÞ is not a smooth function on the interval ½0; l� at x ¼ xj: It is possible to

introduce a smooth function u0ðxÞ such as

uðxÞ ¼ u0ðxÞ þ
Xn

j¼1

DjHðx � xjÞ; ð6Þ

where Hðx � xjÞ is the Heaviside function defined as [27]

Hðx � xjÞ ¼
1 if xXxj;

0 if xoxj:

(

ARTICLE IN PRESS

a/2

h

a/2

σ

σ

Fig. 2. Double-edge crack.

R. Ruotolo, C. Surace / Journal of Sound and Vibration 272 (2004) 301–316304



By introducing Eq. (6) into Eq. (5), and recalling that

dðx � xjÞ ¼ ½Hðx � xjÞ�0;

the following equation holds

u000ðxÞ þ l2u0ðxÞ ¼ �l2
Xn

j¼1

DjHðx � xjÞ: ð7Þ

The general solution of Eq. (7) can be written as

u0ðxÞ ¼ a cosðlxÞ þ b sinðlxÞ

þ
Xn

j¼1

DjHðx � xjÞ ½cos lðx � xjÞ � 1�; ð8Þ

where a;b; are constants. By differentiating the previous function once it is possible to obtain the
expression for u00ðxÞ at the cracks positions xi:

u00ðxiÞ ¼ �al sinðlxiÞ þ bl cosðlxiÞ þ
Xn

j¼1

DjNij ; ð9Þ

where

NijðlÞ ¼ dðxi � xjÞ ½cos lðxi � xjÞ � 1� �Hðxi � xjÞ sin lðxi � xjÞl; ð10Þ

where

NijðlÞ ¼ 0; xipxj;

NijðlÞ ¼ �l sin lðx � xjÞ; xi > xj: ð11Þ

Using Eqs. (9), (10) and as

lim
x-xi

u0ðxÞ ¼ u0
0ðxiÞ; i ¼ 1; 2;y; n; ð12Þ

the last of conditions (2), i.e., Di ¼ EAciu
0ðxiÞ; can be expressed as

Di ¼ EAlci½�a sinðlxiÞ þ b cosðlxiÞ �
Xn

j¼1

Dj sin lðxi � xjÞ�; i ¼ 1;y; n: ð13Þ

It is necessary to point out that Eq. (13) are valid for all kinds of end conditions of the bar under
analysis. Furthermore, Eq. (13) are a system of n linear equations with n þ 2 unknowns (constants
a; b; and Di). In order to solve the system it is necessary to introduce other two equations, which
are simply obtained by taking into account the end conditions for the bar under analysis.

3. Transfer matrix method

In this section the method of transfer matrix, used by Khiem and Lien [21] for calculating the
natural frequencies of a multi-cracked beam in bending vibration, has been extended to determine
the natural frequencies of a bar with different end conditions.
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For the jth segment ½xj�1; xj�; let

fZðxkÞgj ¼
ujðxkÞ

EAu0jðxkÞ

( )
; ð14Þ

where k ¼ ð j � 1Þ or k ¼ j if the left or the right end is considered, respectively. The general
solution for the jth segment of Eq. (1) is

ujðxÞ ¼ C1; j cos lðx � xj�1Þ þ C2; j sin lðx � xj�1Þ: ð15Þ

The coefficients C1; j and C2; j can be obtained by evaluating function ujðxÞ and its derivative at
x ¼ xj�1

C1; j ¼ ujðxj�1Þ ¼ Zðxj�1Þj;1 C2; j ¼
u0jðxj�1Þ

l
¼

Zðxj�1Þj;2
lEA

: ð16Þ

Substituting Eq. (16) in Eq. (15) the following expression is obtained

ujðxÞ ¼ Zðxj�1Þj;1 cos lðx � xj�1Þ þ
Zðxj�1Þj;2

lEA
sin lðx � xj�1Þ: ð17Þ

Using Eq. (17) the relationship between fZðxjÞgj and fZðxj�1Þgj; respectively, at the right and at
the left of the segment j of length lj ¼ xj � xj�1; can be written

ZðxjÞj;1 ¼ Zðxj�1Þj;1 cos llj þ
Zðxj�1Þj;2
lEA

sin llj;

ZðxjÞj;2 ¼ �Zðxj�1Þj;1lEA sin llj þ Zðxj�1Þj;2 cos llj; ð18Þ

and, in matrix form

fZðxjÞgj ¼ ½T�jfZðxj�1Þgj; ð19Þ

with

½T�j ¼
cos llj sin llj=lEA

�lEA sin llj cos llj

" #
: ð20Þ

In correspondence with the jth crack, the relationship between fZðxjÞgjþ1 and fZðxjÞgj;
respectively, at the right and at the left of the crack is

fZðxjÞgjþ1 ¼ ½J�jfZðxjÞgj; ð21Þ

where

½J�j ¼
1 cj

0 1

" #
; ð22Þ

with cj already expressed in Eq. (4).
Introducing expression (19) into (21) the following is obtained

fZðxjÞgjþ1 ¼ ½J�j½T�jfZðxj�1Þgj ¼ ½Q�jfZðxj�1Þgj; ð23Þ
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where

Q11; j ¼ cos llj � cjlEA sin llj

Q12; j ¼ sin llj=lEA þ cj cos llj

Q21; j ¼ �lEA sin llj

Q22; j ¼ cos llj: ð24Þ

Consequently, variables at the right end of the bar can be expressed as a function of those at the
left end:

fZðxnþ1Þgnþ1 ¼ ½T�nþ1½Q�n½Q�n�1y½Q�1fZðx0Þg1 ¼ ½Q�fZðx0Þg1: ð25Þ

The matrix ½Q� depends on the natural frequencies of the bar, on the position of the cracks
fxg ¼ Ix1; x2;y; xnm

T and on the extents of the cracks fcg ¼ Ic1; c2;y; cnm
T:

The boundary conditions can be expressed in the following way:

½B01B
0
2�

u1ðx0 ¼ 0Þ

EAu01ðx0 ¼ 0Þ

( )
¼ 0;

½Bl
1B

l
2�

unþ1ðxnþ1 ¼ lÞ

EAu0nþ1ðxnþ1 ¼ lÞ

( )
¼ 0; ð26Þ

or in a more compact form as:

fB0gTfZðx0Þg1 ¼ 0;

fBlgTfZðxnþ1Þgnþ1 ¼ fBlgT½Q�fZðx0Þg1 ¼ 0; ð27Þ

and can be combined together as

½A�fZðx0Þg1 ¼ f0g; ð28Þ

with

½A� ¼
fB0gT

fBlgT½Q�

" #
¼

B01 B02P2
j¼1 Bl

jQj1

P2
j¼1 Bl

jQj2

" #
: ð29Þ

In order to determine the natural frequencies of the bar, the following equation must be solved:

det½Aðo; fxg; fcgÞ� ¼ B01ðB
l
1Q12 þ Bl

2Q22Þ � B02ðB
l
1Q11 þ Bl

2Q21Þ ¼ 0: ð30Þ

For the following boundary conditions Eq. (30) becomes

free2free B01 ¼ Bl
1 ¼ 0 det½A� ¼ �B02B

l
2Q21 ¼ Q21 ¼ 0;

fixed2free B02 ¼ Bl
1 ¼ 0 det½A� ¼ B01B

l
2Q22 ¼ Q22 ¼ 0;

fixed2fixed B02 ¼ Bl
2 ¼ 0 det½A� ¼ B01B

l
1Q12 ¼ Q12 ¼ 0: ð31Þ
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4. Results

4.1. Numerical results

In order to validate the procedures proposed in this paper, the dynamic behaviour of a bar with
three cracks has been simulated. The results are compared with those obtained using a finite
element model with ten elements; the cracked element is described in the Appendix.
The bar under analysis has the following mechanical properties: Young’s modulus E ¼

2:1� 1011 N=m2; material density r ¼ 7800 kg=m2; the Poisson’s ratio n ¼ 0:3 and rectangular
cross-section with width b ¼ 0:02 m and height h ¼ 0:02 m: The first four natural frequencies for
both fixed–free and free–free bar, for the undamaged case, are listed in Table 1, allowing
comparison of the results predicted by the continuous model with the finite element method.
The bar with a fixed end has a first crack at position x1 ¼ 0:04 m and depth a1 ¼ 6 mm; a

second crack at position x2 ¼ 0:12 m and depth a2 ¼ 4 mm: A third crack with a variable position
ranging from 0.2 to 0:8 m (distance calculated from the fixed end) and a relative depth s3 ¼ a3=h

of 0.1, 0.2 and 0.3 was introduced.
The ratio between the first four natural frequencies of cracked and uncracked bar is shown in

Figs. 3–6. Focusing the attention on the first two natural frequency ratios, shown in Figs. 3 and 4,
a very good agreement can be seen among the results obtained by using the three models. For the
third and the fourth natural frequency the results, in terms of frequency ratio, obtained with the
transfer matrix method are closer to the results obtained with the finite element model, even
though there are relatively large differences in the predicted natural frequencies for undamaged
bars, as already shown in Table 1. However, even in these cases discrepancies are negligible, as is
also demonstrated in Table 2, where the maximum relative difference for natural frequencies
predicted using the method described in Section 2 and the transfer matrix method are listed for the
case of the deepest crack. This table shows that relative differences between the predictions are
lower than 0.04%.
Figs. 7–10 show the same kind of results for the bar in free–free conditions.
In order to determine the accuracy of the results predicted by the finite element method, a

convergence analysis has been performed, by varying the number of elements discretising the
structure. For this purpose a fixed–free bar with the same mechanical and geometrical
characteristics of the previous examples has been considered. The bar has a single crack of
relative depth s ¼ 0:3 located in the middle-span. Fig. 11 shows the trend of the error on the non-
dimensional reduction of the first four longitudinal natural frequencies with respect to the
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Table 1

Natural frequencies for the undamaged bars evaluated using the continuous model and FEM

Fixed–free bar Free–free bar

fn ðHzÞ Continuous FEM Continuous FEM

1 1621 1623 3243 3256

2 4864 4910 6486 6593

3 8107 8317 9729 10 092

4 11 350 11 927 12 972 13 832
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asymptotic value:

eðiÞk ¼
ðDoi=oiÞk
ðDoi=oiÞ41

� 1; ð32Þ
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Fig. 3. Effect of the third crack on the first natural frequency for the fixed–free bar (—, smooth function method;

3; transfer matrix method; �; FEM).
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where 41 is the maximum number of elements considered to subdivide the bar under analysis. The
figure indicates that the maximum error has magnitude of 0.01% even for a rather coarse mesh
with only 5 elements. This is an interesting result, demonstrating that although, in general, a
relatively high number of elements is necessary to predict the eigenfrequencies (i.e., on) of the
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structure under analysis with a sufficient precision, a coarse mesh is able to predict accurately the
sensitivity (i.e., Don=on) of natural frequencies to the presence of a crack.

4.2. Comparison with experimental results

Fig. 12 shows the comparison between predictions obtained by using several mathematical
models with experimental results presented in Ref. [15] by Chondros et al. The bar under analysis
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Table 2

Maximum relative difference between natural frequencies evaluated using the smooth function method ð fiÞ and the
transfer matrix method ð fi;TM Þ

i fi ðHzÞ jfi � fi;TM j=fi Position ðx3=lÞ
(%)

Fixed–free bar

1 1609.4 0.0036 0.550

2 4826.9 0.0111 0.550

3 8055.5 0.0172 0.325

4 11284.0 0.0231 0.525

Free–free bar

1 3228.4 0.0038 0.550

2 6450.9 0.0138 0.800

3 9669.9 0.0260 0.550

4 12893.0 0.0362 0.925
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Fig. 7. Effect of the third crack on the first natural frequency for the free–free bar (—, smooth function method;

3; transfer matrix method; �; FEM).
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has the following properties: cross-section with width of 6 mm and height of 23 mm; length of
235 mm; Young’s modulus E ¼ 7:2� 1010 N=m2 and material density of 2800 kg=m3: As
described in Ref. [15], a single crack propagated perpendicular to the longitudinal axis at
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mid-span and the fundamental longitudinal natural frequency was estimated by hammer testing
the free–free bar. The simulations were performed considering the stress intensity factor relative to
a one-edge crack used in Ref. [15]. In Fig. 12 the relative reduction of the first longitudinal natural
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frequency of the bar versus the relative depth a=h of the crack is shown. This figure shows
extremely good agreement among predictions provided by the various mathematical models and a
very good correlation with experimental results, even though all the mathematical models predict
a reduction higher than that estimated during the vibration tests.

5. Conclusions

In this paper natural frequencies of a cracked bar are evaluated by representing cracks as mass-
less springs and considering a continuous mathematical model of the bar in longitudinal
vibration. Two approaches have been used: the smooth function method and the transfer matrix
method. In both cases it is possible to determine the eigenfrequencies of the bar from the roots of
a determinant that can be written in a concise manner for an arbitrary number of cracks n;
enabling the times of computation to be reduced.
In the case of the smooth function method the determinant of a ðn þ 2Þ � ðn þ 2Þ dimension

matrix, is calculated, while in the case of the transfer function method the natural frequencies of
the cracked bar are determined by determinant calculation of a 2� 2 dimension matrix, although
this matrix is obtained performing n multiplications of n þ 1 matrices; alternatively the
determinant of a ð2n þ 2Þ � ð2n þ 2Þ dimension matrix would be computed, when applying the
classical procedure developed in [6,16].
Finally a comparison of results obtained using the two methods based on a continuous model

and the finite element method shows a very good agreement giving validity to the procedures
proposed.
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Appendix. Finite element model of the cracked bar

The mathematical model used for the bar with a transverse on-edge not propagating fatigue
crack is based on the finite element model proposed in Ref. [23].
A two node finite bar element with one degree of freedom per node with a transverse on-edge

not propagating open crack is shown in Fig. 13. The stiffness matrix ½Kd �e of this element has been
calculated by means of the relationship [24]

½Kd �e ¼
1

ðc0 þ c1Þ
fTgfTgT; ðA:1Þ

where T ¼ f�1; 1gT is a transformation vector, c0 ¼ L=EA is the flexibility of the non-cracked
element [28] and c1 is the additional flexibility of the element due to crack already defined in
Eq. (4).
It is supposed that the crack does not affect the mass matrix ½M�: Therefore for a single element,

½M�e ¼
rAL

6

2 1

1 2

" #
: ðA:2Þ
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